サイトアイコン 建築士に独学合格!公認建築士試験過去問題を公開

バリニオンの定理とは?建築士試験対策

バリニオンの定理を証明したピエール・バリニオン(Pierre Varignon,1654年-1722年)




バリニオンの定理

バリニオンの定理とは静力学で用いられ、主に建築分野で用いられる定理である。

「多くの力のある1点に対する力のモーメントの総和は、それらの力の合力のその点に対するモーメントに等しい」

つまり、以下の式で求められる。

 

合力のモーメント=分力のモーメントの合計

例題

以下に例題として2級建築士試験の平成23年度第1問目を挙げる。

 

〔No.1〕図のような分布荷重の合力の作用線からA点までの距離として、正しいものは、次のうちどれか。



1.1.6m
1.2.2m
3.2.6m
4.2.8m
5.3.4m

解法

まず分力の大きさを求め、合力を求める。複雑な力が働く場合は以下の図のように分けて求める。

赤文字で示しているのが合力の力と距離である。

「バリニオンの定理」により、合力RのA点までの距離Xを以下のように求める。

合力のモーメント=分力のモーメントの合計

20kN × Xm = (8kN × 1m) + (12kN × 4m)

20kN × Xm = 56 kN・m

よって、X = 2.8 m

 

出題:平成22年度2級学科3、No.01平成23年度2級学科3、No.01

おすすめ参考書

・やさしい 建築構造力学演習問題集: 解法手順を身につける書き込み式ワークブック

・二級建築士受験対策 構造力学-問題と解説

モバイルバージョンを終了